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Far-infrared response of quantum-dot molecules

M. Vaĺın-Rodŕıguez, A. Puente, and Ll. Serraa

Departament de F́ısica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain

Received 29 November 2000

Abstract. We report an analysis of the dipole response of a symmetric quantum-dot molecule as a function
of the dot-dot separation and intensity of a perpendicular magnetic field. The potential barrier is assumed
proportional to the interdot distance using a two-center oscillator potential. The results are obtained
within the symmetry-unrestricted TDLSDA. It is shown that the FIR details, specially the fragmentation
of the low-energy brach, are quite sensitive to the interdot separation and that in both the small and large
separation limits the results converge towards the analytic Kohn’s magnetoplasmon energies. The validity
of the LSDA is checked by comparison with the Hartree-Fock dipole spectrum in one case.

PACS. 73.20.-r Electron states at surfaces and interfaces – 78.20.Bh Theory, models and numerical
simulation

1 Introduction

Nanolithography and etching techniques have nowadays
developed to the point that they can be used to fabricate
an important variety of quantum dots (QD) and general
electronic nanostructures [1]. This has obviously, given a
strong impetus to the experimental research in nanostruc-
tures, motivating an intense theoretical activity as well.
Much effort has been devoted to the understanding of iso-
lated quantum dots (see for instance Ref. [2]) but, in prac-
tice, these systems are usually produced in more or less
regular arrays with characteristic dot-dot separations. The
large separation limit is normally considered, although the
relevance of inter-dot interactions is something that must
be taken into account. Indeed, this point has been ad-
dressed by Bakshii et al. [3] and by van Zyl et al. [4] who
concluded that in the experiments by Demel et al. [5] in-
terdot coupling is very weak.

Interdot interactions are most important in quantum-
dot molecules (QDM), which are composed of two (close)
quantum dots. These systems have motivated a strong the-
oretical interest [6,7], much like that drawn by quantum-
dot (artificial) atoms, attributed in part to their potential
impact on nanoelectronics technology. In this paper we
report on a calculation of the far-infrared (FIR) dipole re-
sponse in QDM’s, analyzing the dependence on both the
dot-dot separation and the magnetic field. In the limits
of vanishing and large dot-dot separation the FIR spec-
trum is well explained by Kohn’s theorem which yields the
dipole frequencies for a purely parabolic, isolated, dot as
ω± =

√
ω2

0 + ω2
c/4±ωc/2, where ω0 is the parabola coeffi-

cient and ωc = eB/mc the cyclotron frequency. However,
for intermediate separations the dipole response strongly
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deviates from the prediction of Kohn’s theorem exhibiting
a richer structure. This fragmentation must be attributed
to the increasing importance of Landau damping in the
molecular electronic distributions, manifested by a larger
density of particle-hole transitions at the energy of the col-
lective excitations. Large magnetic fields contribute also to
increase the fragmentation since they favour an increase of
the electronic density in the interdot region and therefore,
effectively reduce the dot-dot separation.

The rest of the paper is organized as follows. The
model used to describe the ground state and time-dep-
endent oscillations of the QDM’s is presented in Sec. 2.
Section 3 is devoted to the results and finally, the conclu-
sions are drawn in Sec. 4.

2 The model

2.1 Ground state

We describe QDM’s using the model proposed by
Yannouleas and Landman [6], which was inspired by anal-
ogous two-center oscillator potentials developed in nu-
clear [8] and cluster physics [9]. The external potential
felt by the electrons is purely parabolic in the x-direction
and is a piecewise function in the y-direction. The reader is
addressed to Ref. [6] for details and we only mention here
that the free parameters of the potential are the parabola
coefficient ω0 (the same for x and y-directions as well as
for the two centers), the centers separation ∆ and the in-
terdot barrier height Vb. The results that will be presented
below correspond to a QDM containing 12 electrons with
parabola coefficient ω0 = 0.5H∗ [10] and varying separa-
tion and barrier height. A proportionality between barrier
height and separation is assumed. In order to reproduce
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a smoothly increasing barrier for small separations we
assume first a linear increase Vb(∆) = ∆/8 (in atomic
units) for ∆ < ∆1, and eventually join it with a quadratic
Vb(∆) = ∆2/85.1−0.77, for ∆ > ∆1. The transition point
is chosen as ∆1 = 15, which determines the precise nu-
merical values. In fact, we will report results for the three
cases (∆,Vb) = (3, 0.375), (15, 1.875) and (24, 6), which
are taken as representative examples of small, interme-
diate and large separation, respectively. As we will show
below, the three chosen QDM’s have quite different elec-
tronic distributions, ranging from a compact structure to
the situation of two independent dots.

The electronic structure has been described within the
local-spin-density approximation (LSDA) by solving the
Kohn-Sham equations for the single-particle orbitals,[

1
2m

(
−i~∇+

e

c
A(r)

)2

+ Vη(r)

+ g∗µBBsz

]
ϕiη(r) = εiηϕiη(r), (1)

where η =↑, ↓ labels the two spin components and A(r) ≡
B/2(−y, x) is the vector potential in the symmetric gauge
for the magnetic field B = Bẑ. The last piece within the
brackets is the Zeeman term depending on the spin sz, the
Bohr magneton µB and the effective gyromagnetic factor
g∗ (for bulk GaAs g∗ = −0.44). No symmetry is imposed
to the orbitals ϕiη(r) which are numerically obtained in
coordinate space by discretizing the equations in a uni-
form grid of points. This symmetry unrestricted method
was developed in Ref. [11] to study deformed quantum
dots. The reader is addressed to this reference for tech-
nical details of the numerical approach as well as for the
ingredients of the energy functional giving Vη(r) and the
integration technique.

A well known drawback of LSDA when describing mo-
lecules is its trend to smear the electronic density even
by delocalizing the orbitals [12]. For instance, with an
odd total electron number the large separation limit of a
symmetric QDM would correspond within LSDA to both
dots having a half-integer electron number, which is an
obviously unphysical result. In order to avoid this defi-
ciency, we have only considered the N = 12 QDM, which
splits into two equal 6-electron dots. In this way both the
zero- and large-separation limits correspond to closed-shell
systems that can be properly considered within LSDA.
Furthermore, we have also performed Hartree-Fock cal-
culations, which can describe in a more realistic way the
electronic localization in QDM’s [6], in some cases, with
the purpose to provide additional support to the LSDA
results. This point is further discussed in Sec. 3.

2.2 Time-dependent oscillations

The FIR absorption will be obtained from the time de-
pendent dipole signal

D(t) = e ·
〈

N∑
i=1

ri

〉
, (2)
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Fig. 1. FIR absorption spectrum for the 12-electron QDM
mentioned in Sec. 2, for the small separation and interdot bar-
rier. Each spectrum is plotted in arbitrary but linear scale and
its corresponding magnetic field is indicated by the vertical
axis. The horizontal axis give energies in effective atomic units.
The dashed lines show the dispersion of the analytical Kohn
energies (Sec. 1) and the dotted curve (for B = 6 T) shows the
independent particle-hole transitions. At each magnetic field
the density contour lines and total polarization is also given.

where e is the polarization direction. This real-time tech-
nique is a powerful method which does not require any
symmetry constraint and therefore, it is quite appropri-
ate to address the oscillations in QDM’s. We have applied
it in Refs. [11,13] to study charge and current modes in
elliptical quantum dots. In practice, the time-dependent
Kohn-Sham equations,

i ~
∂

∂t
ϕiη(r, t) =

[
1

2m

(
−i~∇+

e

c
A(r)

)2

+ Vη(r) + g∗µBBsz

]
ϕiη(r, t), (3)

or the analogous Hartree-Fock ones, allow one to moni-
tor D(t) following an initial rigid dipole shift in the e di-
rection, being the corresponding absorption cross section
given by the Fourier transform [11]

σ(ω) ≈ ω

2π

∣∣∣∣∫ dtD(t) exp(iωt)
∣∣∣∣ . (4)
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Fig. 2. Same as Fig. 1 for the intermediate dot-dot separation
and barrier height.

3 Results

Figures 1-3 contain the main results of the paper. They
show the dipole spectra for the three separations men-
tioned in Sec. 2.1, as a function of the applied magnetic
field. The spectra are drawn in linear scale but with arbi-
trary units and the vertical axis indicates, at the intersec-
tion with each baseline, the corresponding magnetic field.
Also shown in the Figs. are the contour lines of the total
density, for the different magnetic fields.

The first case (Fig. 1) corresponds to two overlapping
dots and therefore to the situation of a strong dot-dot
influence. We notice that the B = 0 spectrum has two
dominant peaks, reflecting the splitting due to the ellipti-
cal electronic distribution. When B increases the strength
separates into two clear branches, with some fragmenta-
tion, that on average follow Kohn’s analytical formula
given by the dashed line (Sec. 1). Figure 2 corresponds
to the intermediate separation and barrier height. The
dot-dot interaction is still very important as one realizes
from the density contour lines. We notice that the frag-
mentation of the FIR spectrum is dramatically increased
with respect to that of Fig. 1, specially for the low energy
branch. This fragmentation is due to a more important
role of the Landau damping mechanism. To prove this we
show as a dotted line the independent particle-hole tran-
sitions at B = 6 T. For clarity the spectrum has been
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Fig. 3. Same as Fig. 1 for the large dot-dot separation and
barrier height.

slightly shifted in the vertical direction. It is clear that
the number of particle-hole transitions in Fig. 2 is higher
than in Fig. 1, and they are also closer in energy to the
peaks of the interacting response, which favours the damp-
ing of the collective motion. It is worth to mention that
a similar mechanism was shown by Yannouleas to be the
source of an important fragmentation in the absorption of
potassium clusters [14].

Figure 3 shows the results for the well separated dots.
As one would expect, in this case the FIR absorption at
low B’s has a much cleaner structure, with practically no
fragmentation in either branch for B ≤ 6 T. In this regime
each dot is essentially decoupled from the other one and
indeed, we have checked that the spectrum of a single
dot coincides with the result for the molecule. We notice
however that the peaks slightly deviate from Kohn’s pre-
diction for B = 4 and 6 T due to the deviation from
a perfect parabola introduced by the inter-dot barrier.
Our barrier parameterization thus allows the possibility of
having independent but non-parabolic dots in the QDM.
A qualitatively different spectrum appears for B ≥ 8 T,
with a fragmentation similar that of Fig. 2. The reason
for this becomes obvious when looking at the density con-
tours for these magnetic fields. At large B’s the electronic
density is deformed by pulling electrons towards the inter-
dot region and therefore in an effective way the interdot
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Fig. 4. Same as lower panel of Fig. 2 but within Hartree-Fock
theory.

distance is reduced thus increasing the dot-dot coupling.
The effective dot-dot attraction at large magnetic fields is
also quite evident from Fig. 2. It can be hinted from the
general property that large magnetic fields induce smaller
electronic orbits and therefore, more compact QDM’s.

The net magnetization 2S ≡ N↑−N↓ is also indicated
in Figs. 1-3. Obviously, when increasing the magnetic field
the molecule tends to spin polarize. However, the spin gain
with B is faster for the small separation (Fig. 1) than for
the intermediate and large distances (Figs. 2, 3). Quite
interestingly, we also notice that for the small separation
the QDM has a non-vanishing spin (2S = 2) even at B =
0. We remark that the isolated parabolic dots with N =
12 and 6 electrons are closed shell systems with S = 0.
Therefore, our results indicate that when the two dots
begin to separate in the QDM the spin increases, reaching
a maximum for some distance and eventually decreases
again to the S = 0 limit for large dot-dot distances. This
mechanism of spin gain at B = 0 by deformation of closed
shell systems has also been obtained in the quantum dot
calculations of Refs. [15,16].

Finally, Fig. 4 shows the result for the intermediate
separation at B = 0 obtained within Hartree-Fock the-
ory. In this case each single-particle wave function is com-
pletely localized in one or the other dot; contrarily to the
Kohn-Sham results for which some orbitals are shared by
the two dot centers. Nevertheless, the agreement with the
lower panel of Fig. 2 is rather good, both in the spec-
trum fragmentation and in the shape of the density con-
tours. This supports the use of the TDLSDA and indi-
cates, in our opinion, that the Kohn-Sham orbitals are a
mathematical ingredient of density-functional theory that,
as opposed to electron spin densities, lack a fundamental
importance. A more detailed presentation of the Hartree-
Fock results will be given elsewhere.

4 Conclusions

The FIR absorption of three representative QDM’s has
been obtained within the time-dependent LSDA as a

function of the applied magnetic field. The three cases cor-
respond to a QDM with 12 electrons with a short, interme-
diate and large dot-dot separation, respectively. The inter-
dot barrier has been parameterized in order to model the
transition from a compact structure to two independent
6-electron dots. Both for vanishing and very large separa-
tions the spectrum can be understood in terms of Kohn’s
theorem. For intermediate separations however it shows
a sizeable fragmentation which is more important for the
low energy brach. This fragmentation is a manifestation of
the Landau damping and it first increases with separation,
reaching a maximum for a certain distance, and then de-
creases to reach the pure magnetoplasmon (Kohn) modes
again. Large magnetic fields tend to couple the two dots
by introducing an effective attraction and also favour the
spectrum fragmentation. The dependence of the ground
state spin and density distributions with magnetic field
for the different QDM’s has been discussed.

This work has been performed under Grant No. PB98-0124
from DGESeIC, Spain.
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